Data Mining Application for the Spread of Endemic Butterfly Cenderawasih Bay using the K-Means Clustering Algorithm
نویسندگان
چکیده
The superfamily Papilionoidea day butterfly, which is endemic to the Cenderawasih Bay islands (Numfor, Supiori, Biak and Yapen), consists of 6 family species: Papilionidae, Hesperiidae, Pieridae, Riodinidae, Lycaenidae Nymphalidae families. This study aims analyze grouping butterflies Cendrawasih based on wings colours in 4 Clusters, namely Numfor, Yapen Islands, by applying function K-Means Clustering algorithm data mining method. selection was carried out 7 times with conclusion that Numfor had 13 types Endemic Butterfly species, Papuan Species, Supiori 9 11 Species. analysis results were then retested an application built using Waterfall system development method PHP MySQL programming languages. In addition for butterflies, created produces a butterfly distribution map displays information family.
منابع مشابه
the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملA Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS
Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...
متن کاملComparative Analysis of k-means and Enhanced K-means clustering algorithm for data mining
IJSER © 2012 http://www.ijser.org Comparative Analysis of k-means and Enhanced K-means clustering algorithm for data mining Neha Aggarwal,Kirti Aggarwal, Kanika gupta ABSTRACT-K-Means Clustering is an immensely popular clustering algorithm for data mining which partitions data into different clusters on the basis of similarity between the data points and aims at maximizing the intra-class simi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International journal of online and biomedical engineering
سال: 2023
ISSN: ['2626-8493']
DOI: https://doi.org/10.3991/ijoe.v19i09.40907